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Abstract Macrophage colony stimulating factor (CSF-1) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) are potent 
inducers of macrophage differentiation. Both appear to modulate protein phosphorylation, at least in part, through 
protein kinase C (PKC) raising the question as to whether they concurrently impact on macrophage-like cells. In this 
regard, we utilized the CSF-1 dependent murine macrophage-like line BAC 1.25F5. CSF-1 treatment of these cells for 30 
min leads to particular phosphorylation of a 165 kDa protein, the putative CSF-1 receptor, and a 210 kDa moiety. 
1,25(OH)2D3 exposure for 24 h prior to addition of CSF-1 enhances phosphorylation of the 165 kDa species and, 
especially, the 21 0 kDa protein. Phosphorylation of the latter protein is  1 ,25(OHI2D3 dose- and time-dependent and the 
molecule i s  specifically immunoprecipitated with a rabbit polyclonal anti-talin antibody. Experiments with okadaic acid 
show that the enhanced phosphorylation of talin does not result from serine phosphatase inhibition. CSF-1 and 
1,25(OH),D:,, alone or in combination, do not increase talin protein expression. The tyrosine kinase inhibitor, 
genestein, blocks 1 ,25(0H)2D3/CSF-1 induced phosphorylation of the putative CSF-1 receptor but has no effect on talin 
phosphorylation which occurs exclusively on serine. In contrast to genestein, staurosporin, an inhibitor of PKC, inhibits 
phosphorylation of talin. Moreover, exposure of 1 ,25(OH)?D3 pretreated cells to phorbol 12-myristate 13-acetate 
(PMA) in place of CSF-1 also prompts talin phosphorylation. Finally, 1 ,25(OHl2D3 enhances 3[H1PDB~ binding, 
indicating that the steroid increases PMA receptor capacity. Thus, CSF-1 and 1 ,25(OH)*D3 act synergistically via PKC to 
phosphorylate talin, a cytoskeletal-associated protein. 
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The macrophage colony stimulating factor, 
CSF-1, is responsible for survival, proliferation, 
and differentiation of mononuclear phagocytes 
from bone marrow progenitor cells to mature 
macrophages [Tushinski et al., 19821. It is a 
homodimeric glycoprotein growth factor, and its 
pleiotropic effects are mediated via a high affin- 
ity cell surface CSF-1 receptor [Guilbert and 
Stanley, 1980; Byrne et al., 1981; Bartelmez and 
Stanley, 19851 identical to the c-fms proto- 
oncogene product [Sherr et al., 19851. 

Abbreviations used: 1,25(OH)2D3 = 1,25-dihydroxyvitamin 
D3; CSF-1 = colony stimulating factor; PKC = protein 
kinase C; PDBu = phorbol dibutyrate; PMA = phorbol-12 
myristate-13 acetate; PY-20 = antiphosphotyrosine anti- 
body; SDS-PAGE = sodium dodecyl sulphate-polyacryl- 
amide gel electrophoresis. 
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Like CSF-1, 1,25(OH)2D3, the biologically ac- 
tive form of vitamin D3 (calciferol), promotes 
differentiation of transformed and nontrans- 
formed cells along a monocytic pathway [Rovera 
et al., 1979; Bar-Shavit et al., 1983; Mangelsdorf 
et al., 1984; Murao et al., 19831. While the precise 
mechanisms by which the steroid prompts such 
maturation are unknown, it modulates expres- 
sion of c-fms [Perkins and Teitelbaum, 19911, 
suggesting commonalities between 1,25(OHI2D3 
and CSF-1 mediated macrophage differentiation. 

c-fms is a member of a family of growth factor 
receptors with tyrosine kinase activity which 
undergo autophosphorylation when occupied by 
their ligand Weung et al., 19871. Exposure of 
macrophages to CSF-1 also prompts phosphory- 
lation of several cytosolic proteins and ulti- 
mately leads to downregulation of its receptor, 
an event associated with ligand internalization 
and degradation [Guilbert and Stanley, 19861. 
The means by which CSF-1 phosphorylates in- 
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tracellular proteins appears to involve, at least 
in part, activation of phospholipase C, thereby 
hydrolyzing phosphatidyl inositol4,5-phosphate 
to inositol1,4,5-triphosphate and diacylglycerol, 
leading in turn to increased diacylglycerol pro- 
duction and activation of protein kinase C (PKC) 
[Shurtleff et al., 1990; Veis and Hamilton, 1991; 
Imamura et al., 19901. 

1,25(OH)2D3, acting through its receptor, has 
been shown to modulate membrane phospho- 
lipid metabolism, resulting in an increased syn- 
thesis of phosphatidyl serine [Matsumoto et al., 
19851, activation of PKC [Martell et al., 1987; 
Obeid et al., 1990; Kim et al., 19911, and, ulti- 
mately, phosphorylation of endogenous proteins 
[Obeid et al., 19901. Furthermore, 1,25(OH)& 
mediated macrophage differentiation is mim- 
icked by the PKC agonist, phorbol-12 my- 
ristate-13 acetate (PMA), suggesting that 
activation of the kinase by the steroid may be 
central to the maturational process [Ways et al., 
19871. Consistent with this hypothesis, we have 
recently shown that 1,25(OH),D3 increases phor- 
bol ester receptor number in bone marrow mac- 
rophage precursors (Tanaka et al., 1991). 

Thus CSF-1 and 1,25(OHIzD3, both of which 
are potent inducers of macrophage maturation, 
appear to modulate protein phosphorylation 
through PKC, raising the question as to whether 
they concurrently impact on macrophage-like 
cells and, in so doing, synergistically phosphory- 
late, via PKC, talin, a high molecular weight 
protein critical to cytoskeletal function. 

MATERIALS AND METHODS 

a-MEM and newborn calf serum were pur- 
chased from Gibco (Grand Island, NY). BAC 
1,2F5 cells [Morgan et al., 19871 were kindly 
provided by Dr. R. Stanley (Department of De- 
velopmental Biology and Cancer, Albert Ein- 
stein College of Medicine, New York, NY). 
1,25(0H),D3 is supplied by Dr. Milan Uskokovic 
(Hoffman-LaRoche, Inc., Nutley, NJ). Genes- 
tein and PY20-antiphosphotyrosine antibody 
were purchased from ICN Biochemicals, Inc. 
(Irvine, CAI, and Staurosporin was purchased 
from Boehringer Mannheim Biochemicals (In- 
dianapolis, IN). Carrier-free [32Pl orthophos- 
phate (9,000 Ciimmol), lz5I-iodine and rainbow 
MW markers were purchased from Amersham 
Corporation (Arlington Heights, IL). L3H1 PDBu 
was purchased from DuPont-New England 
Nuclear (Boston, MA). All other reagents were 
from Sigma Chemical Co. (St. Louis, MO). A 

previously characterized [Beckerle et al., 1986 I 
anti-chicken talin polyclonal rabbit antibody was 
kindly provided by Dr. Keith Burridge (Univer- 
sity of North Carolina, Chapel Hill, NC). 

CSF-1 Purification and labeling 

CSF-1 was generated from murine L cells and 
purified to Stage IV as described [Stanley and 
Guilbert, 19811. 

1251-Binding to BAC 1,2F5 Cells 

BAC 1,2F5 cells were maintained as described 
[Sengupta et al., 19881. Purified CSF-1 was ra- 
dioiodinated with retention of biological activity 
(as assessed by proliferation of bone marrow 
macrophage precursors) using carrier-free lZ5I 
by a modification of Greenwood’s chloramine-T 
method [Greenwood et al., 1963; Stanley et al., 
19751. The specific activity was approximately 
2.9 x 10l1 cpmimg CSF-1. CSF-1 binding stud- 
ies were performed in an assay volume of 250 p1 
[Perkins and Teitelbaum, 19911. Protein deter- 
mination was performed by the Bradford Pro- 
tein Assay (Bio-Rad Kit Bio-Rad, Rockville Cen- 
tre, NY). 

Cell Labeling and Stimulation 

BAC 1,2F5 cells cultured (4 x lo6 cellsi60 
mm diameter tissue culture dishes) as described 
[Sengupta et al., 19881, were treated with 10- 
M 1,25(OH)zD3 or with ethanol carrier for 25 h. 
Six h after the initiation of treatment, CSF-1 
was removed, in the presence or absence of 
1,25(OH)zD3, for 16 h, to upregulate the CSF-1 
receptor. Cells were incubated for 2 h in phos- 
phate-free medium and labeled with carrier-free 
[32Pl-orthophosphate for 2 h. 

After labeling, cells were cooled to 4°C for 30 
min and stimulated with saturating concentra- 
tions (as determined by binding studies) of puri- 
fied CSF-1 (30,000 Uiml) for 30 min at 4°C (1l.T 
CSF-1 = .44 fmol) [Stanley, 19851. The cells 
were washed five times with ice-cold phosphate- 
buffered saline (136 mM NaCl, 3 mM KC1, 8 
mmM Na2HP04, pH 7.4) at 4°C and solubilized 
with Triton-containing buffer (10 mM Tris-HC1, 
50 mM NaC1, 1% Triton X-100, 30 mM sodium 
phyrophosphate, 50 mM NaF, 100 FM sodium 
orthovanadate, 5 pM ZnC12, 1 mM phenyl- 
methyl sulfonyl fluoride, and 0.1% BSA, pH 7.05 
(1.5 mlilO0 mm dish, 1 m1/60 mm dish). Cell 
debris was removed by centrifugation (11,000 g, 
30 min, 4°C). 
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Equal amounts of cell protein extracts (500 
pg) were used for immunoprecipitation with 
anti-phosphotyrosine antibody, PY-20. After 
binding for 15-18 h, the proteins were competi- 
tively eluted at 4°C in 40 pl of 1 mM phenylphos- 
phate containing buffer [Golden et al., 19861. 
The eluates were subjected to 5-15% gradient SDS- 
PAGE [Laemmli, 19701 and autoradiography. 

Sequential lmmunoprecipitation 

Eluates from antiphosphotyrosine antibody 
(PY-20) were subjected to sequential immuno- 
precipitation with anti-talin antibody coupled to 
Sepharose-protein A. Bound proteins were washed 
several times in lysis buffer, eluted in boiling 
Laemmli buffer, and subjected to SDS-PAGE and 
autoradiography . 

Phosphoamino Acid Analysis 

The phosphoprotein of interest was eluted 
from the gels by digestion with 50 pg of trypsin 
in 1 ml of 10 mM NH4HC03. Supernatants of 
the digestions were hydrolyzed in 6 N HC1 for 2 
h at 110°C and lyophilized. The samples were 
dissolved in 5 pl electrophoresis buffer [50:156: 
1796 = formic acid (88%): glacial acetic acid: 
HzO] with 0.3-0.5 pg of internal phosphotyro- 
sine, phosphoserine, and phosphothreonine as 
internal amino acid standards. Phosphoamino 
acids were separated by high voltage electropho- 
resis on a thin layer chromatography plate for 
90 min at  2,500 V [Cooper et al., 19821. The 
amino acids were visualized by staining with 
0.5% (w/v) ninhydrin in 30:70% v/v acetic acidl 
acetone mixture and radioactive spots by autora- 
diography. 

3 H - P D B ~  Binding 

Cells cultured in 24-well plates (5 x 1O5/well) 
were treated with 1,25(OH)zD3 or carrier for 25 
h in the presence of 3,000 U/ml CSF-1. The cells 
were washed twice with medium containing 0.1% 
BSA. 3H-PDBu binding studies were performed 
as described [Tanaka et al., 1991; Jaken, 19871. 
Total and non-specific binding were determined 
in duplicate. 

RESULTS 
CSF-1 Binding to BAC 1.2F5 

As previously reported [Li and Stanley, 199 11, 
purified biologically active lZ5I-CSF-1 binds at 
4°C in a concentration dependent manner to 
BAC 1.2F5 cells. Saturation is achieved with 
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Fig. 1. Effect of 1,25(OH)2D3 on CSF-1 binding by BAC 1.2F5 
cells. Cells were cultured in 24-well plates (5 x lo5 cells/well) 
in 1 m l  medium containing 3,000 U CSF-1 in the presence or 
absence of 1,25(OH)2D3 M) for 24 h. After 6 h, the CSF-1 
receptor was upregulated by removal of ligand and incubation 
continued in the presence of 1,25(OH)*D3 or carrier for an 
additional 18 h. In the presence or absence of 100 n M  CSF-1, 
30,000 U '251-CSF-1 was added at 4°C for 30 min and the cells 
were lysed in 1 N NaOH. Data expressed are specific counts 
bound. Each point represents a mean of triplicate cultures & 

S.D. 

24,000 U/ml (data not shown). Thus, in subse- 
quent experiments, maintenance and saturating 
doses of 3,000 and 30,000 U/ml, respectively, of 
the cytokine were used. 

1 ,25(OH)JI3 Upregulates the CSF-1 Receptor 
in BAC 1.2F5 Cells 

We have previously shown that 1,25(OH)zD3 
prompts appearance of CSF-1 receptor in mu- 
rine bone marrow precursors [Perkins and 
Teitelbaum, 19911. As shown in Figure 1, spe- 
cific lZ5I-CSF-1 binding by BAC 1.2F5 cells is 
also enhanced (P < .001) after 24 h exposure to 

M 1,25(OH)zD3. 

Effect of 1,25(OH),D, and CSF-1 
on Protein Phosphorylation 

Sengupta et al. [1988] have shown CSF-1 
stimulation of BAC 1.25F5 cells at 4°C facili- 
tates identification of proteins phosphorylated 
under the influence of CSF-1. Using this ap- 
proach, we labeled 1,25(OH)zD3 or carrier- 
treated BAC 1.2F5 cells with [32Pl orthophos- 
phate. The cells were then maintained at  4°C in 
the absence of CSF-1 or exposed for 30 min to a 
saturating concentration of purified CSF-1 
(30,000 Uiml). They were then solubilized and 
phosphotryosine-containing (i.e., PY-20 reac- 
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Fig. 2. Effect of lr25(OH)2D3 and CSF-1 on protein phosphor- 
ylation. Cells were treated with carrier or 1,25(OH)2D3 ( l o - "  
M) and labeled with 32P-orthophosphate for 2 h. They were then 
incubated in the presence or absence of saturating concentra- 
tions of CSF-1 (30,000 Uiml), lysed and PY-20 antibody added 
to 500 pg protein lysates. The immunoprecipitates were ana- 
lyzed by SDS-PACE and autoradiography. 

tive) proteins immunoprecipitated and electro- 
phoresed. 

As shown in Figure 2, newly phosphorylated 
proteins of approximate molecular mass 210 
and 165, the latter being the probable CSF-1 
receptor, appear in cells treated with a sat- 
urating concentration of CSF-1. In contrast, 
1,25(OHI2D3 alone does not appear to phosphory- 
late the 165 kDa protein, but slightly phosphory- 
lates the 210 kDa species. Even more dramatic 
protein phosphorylation occurs, however, when 
cells treated with 1,25(OH)2D3 for 25 h are ex- 
posed for 30 min to 30,000 Uiml CSF-1. In this 
circumstance, an abundance of proteins (2 10, 
165, 116, 97, 52, and 35 kDa), including those 
induced by CSF-1 alone, are phosphorylated. 
Consistent with the facts that 1,25(OH)2D3 up- 
regulates c-fms expression (Fig. 1) and, upon 
occupancy, the CSF-1 receptor undergoes auto- 
phosphorylation, the 165 kDa protein is phos- 
phorylated to a much greater degree in response 
to both 1,25(OH),D3 and CSF-1 than to  the 
cytokine alone. 

1,25(OHI2D3 treatment also enhances CSF-1- 
mediated phosphorylation of the 210 kDa 

Fig. 3. Dose response of 1 ,25(OH)~D3-induced phosphoryl'j- 
tion. Cells were exposed to either carrier or 1,25(OH)]D. at the 
specified concentrations, "P-orthophosphate labeled, and inc u- 
bated in the presence of a saturating concentration of CSF-1 
(30,000 Uiml) for 30 min at 4°C prior to solubilization and 
irnrnunoprecipitation with PY-20 antibody. The irnrnunoprecini- 
tates were analyzed by SDS-PACE and autoradiography. 

Fig. 4. Kinetics of 1,25(0H)2D3-induced protein phosphory4a- 
tion. Cells were pretreated with carrier or 1,25(OH)?D (10.' 
M) for the indicated duration, labeled with 'LP-orthopho,ph.rl.e, 
and incubated in the presence of 30,000 Uiml CSF-1, at 1°C for 
30 min. Solubilization, irnmunoprecipitations, and analysis mere 
performed as described in Figure 2. 

protein. The phenomenon is dose-dependent as 
regards 1,25(oHl2D3 with increased phosphory- 
lation appearing at 10-l1 M (Fig. 3). As shown in 
Figure 4, CSF-l-stimulated 210 kDa protein 
phosphorylation occurs as early as two h after 
1,25(OHI2D3 treatment, and peaks at 25 h. Phos- 
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phorylation falls slightly when induced after 73 
h of 1,25(OH)& exposure but is still greater 
than that occurring in carrier-treated cells. It is 
of interest that while the 210 and 165 kDa 
proteins are invariably the major phosphory- 
lated species in cells sequentially exposed to 
1,25(OH)zD3 and CSF-1, the relative amounts of 
these phosphoproteins vary. For example, in 
light of the abundance of the 210 kDa protein, 
Figures 3 and 4 represent relatively underex- 
posed autoradiograms so as to demonstrate 
1,25(OH)zD3 dose and time dependency, respec- 
tively. In these experiments, the 210 kDa phos- 
phorylated species was significantly greater than 
that of the 165 kDa protein. Furthermore, we 
observed that the 165 kDa phosphoprotein is 
sensitive to freezing and thawing, and the speci- 
men was so treated in those experiments yield- 
ing a relative paucity of the molecule. 

Characterization of 210 kDa Protein 

The nature of the 210 kDa phosphoprotein 
was established as talin by subjecting the 
32P-labeled proteins to sequential immunopre- 
cipitations. The total phosphotyrosine-contain- 
ing product precipitated with the anti-phospho- 
tyrosine antibody PY-20, was reprecipitated with 
anti-talin yielding a 2 10 kDa phosphoprotein 
inducedby CSF-1 and 1,25(OH)zD3 (Fig. 5). 

The enhanced 32P labeling of talin may theo- 
retically reflect either increased protein sub- 
strate or accelerated kinase activity. To resolve 
this issue, we estimated the quantity of PY-20 
immunoprecipitated talin by silver staining. As 
can be seen in Figure 6, regardless of treatment, 
there are no differences in intensity of 210 kDa 
silver-stained protein band. 

Mechanisms of Phosphorylation of Talin 

Having identified the 210 kDa protein as ta- 
lin, we turned to the mechanism by which it 
undergoes phosphorylation under the influence 
of 1,25(OH)2D3 and CSF-1. We first addressed 
the possibility that the phenomenon reflects in- 
hibition of phosphatase activity. To this end, we 
utilized okadaic acid, a potent inhibitor of ppl  
and pp2A [Haystead et al., 1989; Cohen et al., 
19901 and found it fails to  enhance talin phos- 
phorylation (Fig. 7). Thus the 1,25(OH)zD,/ 
CSF-1 effect probably does not reflect serine 
phosphatase inhibition. 

With this information in hand, we addressed 
the kinase(s) responsible for 1,25(OH)2D3/CSF-1 
stimulated talin phosphorylation. Because c-fms 

Fig. 5. Characterization of 210 kDa protein. Cells were ex- 
posed to carrier or 1,25(OH)?D3 M )  for 24 h. The CSF-1 
receptor was upregulated and the cells were labeled with 
32P-orthophosphate for 2 h, and incubated in the presence of 
CSF-1 (30,000 U/ml)  for 30 min at 4°C. Protein lysates (500 Lg) 
were used for immunoprecipitation with PY-20 antibody. The 
PY-20 (anti-phosphoytyrosine) immunoprecipitates were eluted 
and reimmunoprecipitated with chicken anti-talin rabbit poly- 
clonal antibody. The PY-30 reactive proteins (lanes 1 ,  2 )  and 
anti-talin immunoprecipitates (lanes 3, 4) were subjected to 
SDS-PAGE and autoradiography. 

is a tyrosine-specific protein kinase [Yeung et 
al., 19871, we first explored the effect of the 
tyrosine kinase inhibitor, genestein [Akiyama et 
al., 1987; Watanabe et al., 19891. As shown in 
Figure 8, this agent blocks phosphorylation of 
the putative CSF-1 receptor but not of talin. 

In contrast to genestein, staurosporin, a po- 
tent PKC inhibitor [Tamaoki et al., 1986; Easom 
et al., 19891, attenuates 1,25(OH)zD3/CSF-1 in- 
duced phosphorylation in a concentration-depen- 
dent manner (Fig. 9). To further investigate the 
possible role of PKC in talin phosphorylation, 
cells were pretreated with 1,25(OH)2D3 for 24 h 
and labeled with 32P orthophosphate for 2 h in 
the absence of steroid. The cells were then cooled 
to 4°C and stimulated with the PKC agonist, 
PMA (1.6 x MI. As shown in Figure 10, 
similar to CSF-1, PMA enhances talin phosphor- 
ylation by cells pretreated with 1,25(OH)2D3. 
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Fig. 6. Silver stained phosphoproteins. Protein lysates were prepared from control cells (lane l ) ,  or those 
treated at 4°C with CSF-1 (lane 2) ,  only with 1,25(OH)2D3 (lane 3), or with both CSF-1 and 1,25(OH)2D3 
(lane 4). They were then irnmunoprecipitated with anti-phosphotyrosine antibody (PY-20). The imrnuno- 
precipitates were eluted to SDS-PACE and silver stained. 

Phosphoamino acid analysis of the 32P ortho- 
phosphate-labeled talin is also consistent with 
PKC mediation as 1,25(OH)2D3/CSF-1 induced 
phosphorylation occurs exclusively on serine 
(Fig. 11). In contrast, minimal phosphorylation 
occurs in cells treated only with CSF-1. 

These observations are in keeping with the 
hypothesis that 1,25(OHI2D3 enhances expres- 
sion of PKC which is, in turn, activated by 
CSF-1. We therefore examined the effects of 
1,25(OH)2D3 on 3[Hl-PDBu binding by BAC 
1.2F5 cells. As seen in Figure 12, treatment with 
1,25(OH)2D3 M) for 25 h significantly in- 
creases specific cell-associated radioligand, indi- 
cating that in these circumstances the steroid 
induces expression of PKC. 

DISCUSSION 

The development of appropriate cell lines and 
the capacity to isolate homogeneous populations 
of monocytic precursors a t  various stages of 
differentiation has yielded major insights into 
agents which modulate macrophage differentia- 
tion. CSF-1 is clearly pivotal in this regard as 
early macrophage precursors die in the absence 
ofthe growth factor [Clohisy et al., 19871. While 
not proven to be essential to macrophage sur- 
vival, 1,25(OH)2D3 accelerates maturation of 
mononuclear phagocyte precursors [Watanabe 
et al., 19891 and differentiates myelomonocytic 

Fig. 7.  Effect of okadaic acid on protein phosphorylation. Cells 
were treated with carrier or 1,25(OHhD3 (10FM)  and labeled 
with 3ZP-orthophosphate for 2 h. They were then incubated with 
lo-* M okadaic acid at 37°C for 15 rnin prior to addition of a 
saturating concentration of CSF-1 (30,000 U/ml)  for 30 rnin at 
4°C. Solubilization, irnmunoprecipitation, and analysis were 
done as described in Figure 3. 
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Fig. 8. Effect of genestein on protein phosphorylation. Cells 
were labeled with 32P-orthophosphate for 2 h. They were then 
incubated with 100 k m  genestein for 15 min at 37°C prior to 
addition of a saturating concentration of CSF-1 (30,000 U/ml)  
ior 30 min at 4°C. Protein lysates (500 gg) were used for 
immunoprecipitations with PY-20 antibody. The immunoprecipi- 
tates were subjected to SDS-PAGE and autoradiography. Note 
that lanes 1 and 2 are identical to lanes 3 and 4, respectively, of 
Figure 2, as the experiments were performed simultaneously. 

leukemia cells along a monocytic pathway [Re- 
itsma et al., 19831. 

These findings suggest that CSF-1 and 
1,25(0Hl2D3 enjoy complimentary, albeit differ- 
ent roles in macrophage differentiation. To ex- 
plore this hypothesis, we turned to a CSF-1 
dependent murine line, BAC 1.2F5, known to 
respond to the growth factor by phosphorylation 
of a number of proteins, including its own recep- 
tor [Sengupta et al., 19881. We confirmed this 
observation and found that consistent with our 
report that 1,25(OH),D3 modulates the CSF-1 
receptor [Perkins and Teitelbaum, 19911, the 
steroid augments the quantity of putative c-fms 
phosphorylated by its ligand. 

Most importantly as regards this communica- 
tion, a major species phosphorylated by CSF-1 
in conjunction with 1,25(OH)2D3 is a 210 kDa 
protein. Phosphorylation of the protein is con- 
centration-dependent as regards ~ , ~ E I ( O H ) ~ D ~  
with induction apparent within the physiologi- 

Fig. 9. Effect of staurosporin on protein phosphorylation. 
Cells were labeled with 32P-orthophosphate for 2 h and then 
incubated with indicated concentrations of staurosporin for 30 
min at 37°C. The saturating concentration of CSF-7 (30,000 
U/ml) was then added for 30 rnin at 4°C. Protein lysates (500 
gg) were used for immunoprecipitation with PY-20 antibody. 
The immunoprecipitates were analyzed by SDS-PAGE and auto- 
radiography. 

cal range of the hormone. Moreover, despite the 
fact that the quantity of 210 kDa phosphopro- 
tein maximizes after 24 h of steroid exposure, an 
effect obtains within two h. 

Macrophage differentiation is characterized 
by the progressive ability of the precursor cell to  
attach to substrate. In fact, 1,25(OH)2D3 treat- 
ment of either authentic bone marrow macro- 
phage precursors [Clohisy et al., 19871 or poorly 
differentiated leukemic lines, such as HL-60 
[Reitsma et al., 19831, leads to rapid transition 
of non-adherent to adherent cells. These obser- 
vations argue that vitamin-D induced differen- 
tiation may in some way alter cytoskeleton- 
associated proteins. We have, in this regard, 
recently shown that 1,25(0H),D3 enhances ex- 
pression of the vitronectin receptor integrin, 
a,p3 by avian bone marrow macrophages [Med- 
hora et al., 19931. With this in mind, and given 
the size of the 1,25(OH)2D3/CSF-1 phosphory- 
lated species, we queried if it is talin and indeed 
found this to be the case. 

Talin is a large molecule which interacts with 
the p l  integrin subunit on the one hand and 
vinculin and actin on the other [Horwitz et al., 
19861. These proteins recognize distinct binding 
sites on talin [Horwitz et al., 19861 and, as they 
all colocalize to adhesion sites on the plasma 
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Fig. 10. Effect of PMA on protein phosphorylation. Cells were 
treated with 1,25(OH)*D3 M) for approximately 24 h and 
labeled with [32Pl-orthophosphate for 2 h at 37°C. They were 
then exposed to either a saturating concentration of CSF-1 
(30,000 U/ml) (lane 1) or PMA (1.6 x lo-' M) (lane 2) for 30 
rnin at 4°C. The cells were solubilized and the phosphoproteins 
immunoprecipitated (W-20), eluted, and analyzed by SDS-PAGE 
and autoradiograph y.  

membrane [Burridge et al., 19901, it is likely 
that talin plays a pivotal role in associating 
matrix recognizing integrins with the cytoskel- 
eton. 

While the physiologxal significance of the 
1,25(0H),D3/CSF-1-mediated effect is yet to  bt: 
determined, talin phosphorylation is known to 
have biological consequences which appear cell- 
specific. For example, PKC-mediated talin phos- 
phorylation of African green monkey kidney cells 
[Meigs and Wang, 19861 or chicken embryo fibro- 
blasts [Beckerle, 19901 prompts actin fiber 
disarray and/or disappearance of focal contact 5. 

Similarly, interleukin-1 induced talin phosphor- 
ylation is associated with retraction of periodon- 
tal ligament fibroblasts from substrate [&warn - 
strom et al., 19911. While these observations 
suggest that talin phosphorylation disrupts cell - 
matrix attachment, induction of the phosphopro- 
tein in lymphocytes associates it with integrins 
[Burn et al., 19881. Thus, depending upon the 
target cell, talin phosphorylation may poten- 
tially disrupt or stabilize the cytoskeleton. 

Having identified the 210 kDa protein as ta- 
lin, we turned to the mechanism of its phosphor- 
ylation. We found that 1,25(OH)2D3 and CSF-1 
do not increase the absolute amount of talin. 
leading us to conclude that the mechanism must 
involve kinase activation or phosphatase inhibi- 
tion. Eliminating serine phosphatase inhibition 
by the use of okadaic acid [Cohen, 19891, we 
explored the probability of enhanced tyrosine 
kinase activity, a serious consideration in light 
of the enzymatic activity of the occupied CSF-1 
receptor Feung et al., 19871. While as expected, 
the tyrosine kinase inhibitor genestein [Akiyama 

Fig. 11. Phosphoamino acid analysis of talin. The 1,25(OH)*D3/CSF-l induced 210 kDa protein excised from dried 
gel was extracted with trypsin and hydrolyzed in 6N HCI for 2 h at 110°C. The product was lyophilired and 
rehydrated in 5 KI loading buffer containing internal standards phosphoserine, phosphotyrosine, and phosphothreo- 
nine. The samples were subjected to thin layer electrophoresis and autoradiography. The dotted circles represent the 
positions of phosphoamino acid standards revealed by ninhydrin staining. S = phosphoserine; T = phosphothreo- 
nine; Y = phosphotyrosine. 
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Fig. 12. Effect of 1,25(OH)?D3 on ["IPDBu binding. Cells 
were treated with carrier (closed symbols) or 1 ,25(OH)2D3 
(open symbols) for 24 h in the presence of 3,000 Uiml  CSF-1. 
I'HIPDBu bindingwas then measured by incubation with radio- 
ligand for 30 min at 37°C. Non-specific binding was determined 
by t h e  co-addition of 100 pM PDBu. Specific binding is illus- 
trated which represents total minus non-specific (20-40% of 
total binding). Each point depicts the mean of duplicate determi- 
nations and the data are illustrative of 3 experiments. 

et al., 1987; Watanabe et al., 19891 blocks phos- 
phorylation of putative c-fms by 1,25(OH)zD3/ 
CSF-1, it has no effect on talin phosphorylation. 
On the other hand, talin is a known substrate 
for PKC [Litchfield and Ball, 19901, and we 
found that its phosphorylation by 1,25(OH)&/ 
CSF-1 is dampened by relatively low concentra- 
tions of the enzyme's inhibitor, staurosporin. 
Also consistent with the properties of PKC 
[Litchfield and Ball, 19901, serine and not tyro- 
sine is phosphorylated in talin under the influ- 
ence of the steroid and growth factor. Moreover, 
the PKC agonist PMA, when substituted for 
CSF-1 in vitamin D-treated cells, effectively phos- 
phorylates talin. 

1,25(OH)zD3 is known to directly enhance PKC 
transcription [Obeid et al., 19901, to activate the 
enzyme [Wali et al., 19901, and to translocate it 
to cell membranes [Simboli-Campbell et al., 
19921. While 1,25(OH)zD3-induced PKC activa- 
tion may [Burn et al., 19881 or may not involve 
stimulated diacylglycerol production [Obeid et 
al., 19901, regardless of mechanism, the steroid 
has both immediate and long-term agonistic ef- 
fects on the kinase. Thus it is not surprising 
that while 1,25(OH)zD3-primed talin phosphory- 
lation maximizes after 1 day, it may be detected 
within 2 h. The mechanism of relatively short- 
term phosphorylation-priming remains elusive, 
but as evidenced by enhanced PDBu binding, 

the steroid ultimately appears to promote expres- 
sion of PKC. 

Relative to its effect when combined with 
CSF-1, 1,25(OH)2D3 alone has little impact on 
talin phosphorylation, which requires short co- 
exposure to the growth factor. This latter find- 
ing is consistent with the known capacity of 
CSF-1 to activate PKC, probably by enhanced 
generation of diacylglycerol from phosphatidyl 
choline [Imamura et al., 19901. Thus, we pro- 
pose that the mechanism of talin phosphoryla- 
tion by 1,25(OH)zD3/CSF-1 involved increased 
PKC synthesis under the influence of the ste- 
roid with subsequent activation by the growth 
factor. 
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